
Greenfoot Syntax Guidance

1. Setting up the World
Double click on the world on the right to open the code editor, the code required to set up
the world in the correct proportions is

super(wide, tall, 60);

Where wide is the number of cells wide, and tall is the number of cells tall

2. Generating a Random Number
Adding this code to the act() method of any actor will allow you to generate a random
number

int variableName = Greenfoot.getRandomNumber(numberOfNumbers);

Where numberOfNumbers is one greater than the highest number value you want to
return

3. If statements
The following code demonstrates an if statement

if (condition) {

//your code here

} else if (condition2) {

//more code here

} else {

//your else code here

}

Where condition and condition2 are the questioning conditions used to select the
section, the code is executed inside the curly braces where the conditions match

4. Rotating an Actor
First identify the angle you want to rotate the actor in, this will be an integer value between
0 and 360, then use the following code

setRotation(angle);

Where angle is the clockwise angle to rotate the object, remember in Greenfoot the 0°
angle is pointing right.

5. Moving an Actor
There are two ways of moving an actor, the easy way requires you to be rotated in the
correct direction first, then

move(cells);

Will move the actor the amount of cells specified in the direction they are facing.

To move an actor regardless of the direction they’re facing you need to identify the offset
you need to either the X or Y axis that will result in it moving in the direction you want it to

setLocation(getX(), getY());

Where getX() would need to become getX()-1 or getX()+1, and getY() would become
getY()-1 or getY()+1 as needed

6. Checking to see if a key is pressed
The condition required to identify a particular keypress is below

Greenfoot.isKeyDown("right")

Where “right” is the name of the right-arrow key, change this for the correct key.

7: Collision Detection
Collision detection code goes into the act() method of the actor that is not disappearing

Actor actorName;
actorName = getOneObjectAtOffset(0,0,actorName.class);

if(actorName!=null){
WorldClass worldName = (WorldClass)getWorld();
worldName.removeObject(actorName);

}

Replace actorName with the name of the object that will disappear.
Replace WorldClass with the name of the background object.
Replace worldName with the lowercase name of the background object.

8: Playing a sound

Greenfoot.playSound("pop.wav");

This will play the sound file pop.wav

9: Scoring with Counter

Add a counter to the world using the Right click > New Counter(), then make sure to
save the world. Go and find this line of code in the world subclass.

Counter thisCounter= new Counter();

Move it underneath the main method, this will normally be outside the curly braces that
come after public Sky where Sky is the name of the background object. You’ll then need
to add the following right below it.

public Counter getCounter(){
return counter;

}

Click Compile.

Double click on the character on the right that will not disappear and add this to the act()
method inside the curly braces { } of the if statement you used for collision detection.

Counter counter = worldName.getCounter();
counter.bumpCount(value);

Remember to set value as an integer value of how much the score will change. Positive
numbers increase the score, negative numbers decrease the score.

10: Respawning

If an object you’ve removed needs to reappear in the world then one more line of code is
needed

worldName.addObject(actorName, Greenfoot.getRandomNumber(wide),
Greenfoot.getRandomNumber(tall));

This will make the actorName object reappear in the world at a random location based on
the width and height of the canvas. You will need to replace worldName, actorName,
wide and tall with your own values.

